skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seewald, Jeffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Von Damm vent field (VDVF) on the Mid-Cayman Rise in the Caribbean Sea is unique among modern hydrothermal systems in that the chimneys and mounds are almost entirely composed of talc. We analyzed samples collected in 2020 and report that in addition to disordered talc of variable crystallinity, carbonates are a major class of mineral at VDVF. The carbonate minerals include aragonite, calcite, magnesium-rich calcite, and dolomite. Talc and carbonate mineral textures indicate that, rather than replacing volcanic host rock, they precipitate from the mixing of hydrothermal fluids and seawater at the seafloor, occurring in chimneys and surrounding rubble. Alternating precipitation of this mineral assemblage is pervasive, with carbonate minerals typically being succeeded by talc, and with indications that in some cases talc and carbonate minerals replace one another. Stable carbon isotopic data indicate the carbonate minerals originate from the mixing of seawater and hydrothermal fluid, which is supported by U-Th data. Radiocarbon calcite ages and talc 234U-230Th isochron ages indicate mineral ages spanning over thousands to tens of thousands of years. Analyses of these samples illustrate a dynamic system that transitions from carbonate-dominated to Mg-silicate–dominated precipitation over time scales of thousands of years. Our observations raise questions regarding the eventual fate of seafloor precipitates and whether carbonate and silicate minerals in such settings are sequestered and represented in the rock record. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026
  2. Hudson, André O (Ed.)
    ABSTRACT Six marine bacterial isolates were obtained from fluid and sediments collected at alkaline serpentinite mud volcanoes of the Mariana forearc to examine life at high pH in a marine environment. Here, we present the draft genome sequences of these six isolates, classified as strains of the speciesMarinobacter shengliensis. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  3. In January – February 2020, RV Atlantis cruise AT42-22 collected water, volatile, and fluid samples with ROV Jason from hydrothermal vent fields on the mid-Cayman rise. The expedition carried out 4 dives at the Von Damm field and 5 at the Piccard field. The first file is the sampling logs and fluid geochemistry from the Hydrothermal Organic Geochemistry (HOG) sampler. It includes sampling locations, depths, heading, volumes, the highest temperature recorded during sampling, the average fluid temperature recorded during sampling, and pH.  The second file is the measured geochemistry of the fluids, including concentrations of hydrogen sulfide, dissolved inorganic carbon, formate, phosphate, nitrate, nitrite, ammonia, and the stable isotope composition (d13C) of dissolved inorganic carbon. 
    more » « less
  4. Kelemen, Peter (Ed.)
    Most of the geologic CO2entering Earth’s atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite–talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul’s transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq)concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of −3.40 ± 0.04‰, and the enrichment of CO2in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul’s Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2
    more » « less
  5. We examined the mineralogical, chemical and isotopic compositions of secondary fluid inclusions in olivine-rich rocks from two active serpentinization systems: the Von Damm hydrothermal field (Mid-Cayman Rise) and the Zambales ophiolite (Philippines). Peridotite, troctolite and gabbroic rocks in these systems contain abundant CH 4 -rich secondary inclusions in olivine, with less abundant inclusions in plagioclase and clinopyroxene. Olivine-hosted secondary inclusions are chiefly composed of CH 4 and minor H 2 , in addition to secondary minerals including serpentine, brucite, magnetite and carbonates. Secondary inclusions in plagioclase are dominated by CH 4 with variable amounts of H 2 and H 2 O, while those in clinopyroxene contain only CH 4 . We determined hydrocarbon abundances and stable carbon isotope compositions by crushing whole rocks and analysing the released volatiles using isotope ratio monitoring—gas chromatography mass spectrometry. Bulk rock gas analyses yielded appreciable quantities of CH 4 and C 2 H 6 in samples from Cayman (4–313 nmol g −1 CH 4 and 0.02–0.99 nmol g −1 C 2 H 6 ), with lesser amounts in samples from Zambales (2–37 nmol g −1 CH 4 and 0.004–0.082 nmol g −1 C 2 H 6 ). Mafic and ultramafic rocks at Cayman exhibit δ 13 C CH 4 values of −16.7‰ to −4.4‰ and δ 13 C C 2 H 6 values of −20.3‰ to +0.7‰. Ultramafic rocks from Zambales exhibit δ 13 C CH 4 values of −12.4‰ to −2.8‰ and δ 13 C C 2 H 6 values of −1.2‰ to −0.9‰. Similarities in the carbon isotopic compositions of CH 4 and C 2 H 6 in plutonic rocks, Von Damm hydrothermal fluids, and Zambales gas seeps suggest that leaching of fluid inclusions may provide a significant contribution of abiotic hydrocarbons to deep-sea vent fluids and ophiolite-hosted gas seeps. Isotopic compositions of CH 4 and C 2 H 6 from a variety of hydrothermal fields hosted in olivine-rich rocks that are similar to those in Von Damm vent fluids further support the idea that a significant portion of abiotic hydrocarbons in ultramafic-influenced vent fluids is derived from fluid inclusions. This article is part of a discussion meeting issue ‘Serpentinite in the Earth system’. 
    more » « less
  6. The conditions of methane (CH 4 ) formation in olivine-hosted secondary fluid inclusions and their prevalence in peridotite and gabbroic rocks from a wide range of geological settings were assessed using confocal Raman spectroscopy, optical and scanning electron microscopy, electron microprobe analysis, and thermodynamic modeling. Detailed examination of 160 samples from ultraslow- to fast-spreading midocean ridges, subduction zones, and ophiolites revealed that hydrogen (H 2 ) and CH 4 formation linked to serpentinization within olivine-hosted secondary fluid inclusions is a widespread process. Fluid inclusion contents are dominated by serpentine, brucite, and magnetite, as well as CH 4( g ) and H 2( g ) in varying proportions, consistent with serpentinization under strongly reducing, closed-system conditions. Thermodynamic constraints indicate that aqueous fluids entering the upper mantle or lower oceanic crust are trapped in olivine as secondary fluid inclusions at temperatures higher than ∼400 °C. When temperatures decrease below ∼340 °C, serpentinization of olivine lining the walls of the fluid inclusions leads to a near-quantitative consumption of trapped liquid H 2 O. The generation of molecular H 2 through precipitation of Fe(III)-rich daughter minerals results in conditions that are conducive to the reduction of inorganic carbon and the formation of CH 4 . Once formed, CH 4( g ) and H 2( g ) can be stored over geological timescales until extracted by dissolution or fracturing of the olivine host. Fluid inclusions represent a widespread and significant source of abiotic CH 4 and H 2 in submarine and subaerial vent systems on Earth, and possibly elsewhere in the solar system. 
    more » « less
  7. Abstract Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host–symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts. 
    more » « less
  8. Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator–prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling. 
    more » « less
  9. Abstract Single‐celled microbial eukaryotes inhabit deep‐sea hydrothermal vent environments and play critical ecological roles in the vent‐associated microbial food web. 18S rRNA amplicon sequencing of diffuse venting fluids from four geographically‐ and geochemically‐distinct hydrothermal vent fields was applied to investigate community diversity patterns among protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge, Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von Damm at the Mid‐Cayman Rise in the Caribbean Sea. We describe species diversity patterns with respect to hydrothermal vent field and sample type, identify putative vent endemic microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community diversity. At a semi‐global scale, microbial eukaryotic communities at deep‐sea vents were composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles. Individual vent fields supported distinct and highly diverse assemblages of protists that included potentially endemic or novel vent‐associated strains. These findings represent a census of deep‐sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the hydrothermal vent environment at a local scale, ultimately influences the vent‐associated microbial food web and the broader deep‐sea carbon cycle. 
    more » « less